Among The Stars [v0.12a]
Among The Stars [v0.12a] ===== https://urluso.com/2tFQCt
To identify robust homologous groups, we applied criteria in two steps to dynamically search the cross-species tree. First, for each node in the tree, we computed the mixing of cells from three species on the basis of the entropy and set it as a tuning parameter. For each integrated tree, we tuned the entropy parameter to make sure that the tree method generated the highest resolution of homologous clusters without losing the ability to identify potential species-specific clusters. Nodes with entropy larger than 2.9 (for inhibitory neurons) or 2.75 (for excitatory neurons) were considered as well mixed nodes. For example, an entropy of 2.9 corresponded to a mixture of humans, marmosets and mice equal to (0.43, 0.37, 0.2) or (0.38, 0.30, 0.32). We recursively searched all of the nodes in the tree until we found the node nearest the leaves of the tree that was well mixed among species, and this node was defined as a well mixed upper node. Second, we further checked the within-species cell composition for the subtrees below the well mixed upper node to determine whether further splits were needed. For the cells on the subtrees below the well mixed upper node, we measured the purity of within-species cell composition by calculating the percentage of cells that fall into a specific subgroup in each individual species. If the purity for any species was larger than 0.8, we went one step further below the well mixed upper node so that its children were selected. Any branches below these nodes (or well mixed upper node if the within-species cell composition criteria were not met) were pruned, and cells from these nodes were merged into the same homologous groups, and the final integrated tree was generated.
Raw sequence data produced as part of the BRAIN Initiative Cell Census Network (BICCN; RRID SCR_015820) are available for download from the Neuroscience Multi-omics Archive (RRID SCR_016152; -ek5dbmu) and the Brain Cell Data Center (RRID SCR_017266; ). Visualization and analysis tools are available at NeMO Analytics (RRID SCR_018164; individual species, _id=ac9863bf; integrated species, _id=34603c2b) and Cytosplore Viewer (RRID SCR_018330; ). These tools allow users to compare cross-species datasets and consensus clusters via genome and cell browsers and to calculate differential expression within and among species. Subclass-level methylome tracks are available at -species-M1/. A semantic representation of the cell types defined through these studies is available in the provisional Cell Ontology (RRID SCR_018332; ; Supplementary Table 1).
The developers state that the interactive storyline centers on an elite military unit and involves the player character enlisting in the United Empire of Earth Navy, taking part in a campaign that starts with a large space battle.[10][32] The player's actions will allow them to optionally achieve citizenship in the UEE and affect their status in the Star Citizen persistent universe, but neither of the two games has to be played in order to access the other.[44][35] In addition to space combat simulation and first-person shooter elements,[35] reported features include a conversation system that affects relationships with non-player pilots.[32][33] An optional co-operative mode was initially proposed in the Kickstarter, but later changed to be a separate mode added after release.[45] The game is planned to be released in multiple episodes, and according to the developers will be offering an estimated of 20 hours of gameplay for SQ42 Episode 1 with about 70 missions worth of gameplay, "Squadron 42 Episode Two: Behind Enemy Lines" and "Episode 3," will launch later.[36][46][47] The cast for Squadron 42 includes Gary Oldman, Mark Hamill, Gillian Anderson, Mark Strong, Liam Cunningham, Andy Serkis, John Rhys-Davies, Jack Huston, Eleanor Tomlinson, Harry Treadaway, Sophie Wu, Damson Idris, Eric Wareheim, Rhona Mitra, Henry Cavill, and Ben Mendelsohn amongst others.[48][49][50]
In 2014, Eurogamer reported that a grey market had arisen from Star Citizen's funding practices, specifically the sale of limited-run ships and the inability for players to sell ships among themselves. Several people began to act as middle-men to process transactions between players wanting to sell or trade ships, which became more prevalent after changes to in-game ship insurance mechanics on newly sold ships. Cloud Imperium Games made changes to the project's "gifting system", announcing, "In order to eliminate the middleman scam, packages will be giftable only once before they are locked to an account." Middlemen moved around this restriction by primarily dealing with the fiscal side of the transaction and allowing the actual parties to exchange their goods. According to the report, "Chris Roberts expresses no desire to clamp down on the Star Citizen grey market".[127][128]
We have identified highly conserved genes associated with the development of a biomineralised skeleton. We also identify important class-specific characters, including the independent duplication of the msp130 class of genes in different echinoderm classes and the unique occurrence of spicule matrix (sm) genes in echinoids. Using a new quantification pipeline for our de novo transcriptome, validated with other methodologies, we find major differences between brittle stars and sea urchins in the temporal expression of many transcription factor genes. This divergence in developmental regulatory states is more evident in early stages of development when cell specification begins, rather than when cells initiate differentiation.
The calcite endoskeleton of echinoderms provides an ideal system to study the evolution of complex characters at the level of GRNs. The phylum Echinodermata comprises five extant classes with well-supported phylogenetic relationships, with echinoids (sea urchins) and holothuroids (sea cucumbers) (Echinozoa) forming a sistergroup to asteroids (sea stars) and ophiuroids (brittle stars) (Asterozoa), and crinoids (sea lilies) as an outgroup [3,4,5]. While all echinoderms have calcitic skeleton as adults, only ophiuroids and echinoids develop an elaborate skeleton as larvae. In contrast, the larvae of the other three classes either develop only small ossicle primordia, called spicules (holothuroids), or do not form a skeleton at all [6, 7]. This provides an ideal evolutionary context to study the appearance and/or reduction/loss of complex morphological characters. The most comprehensive GRN model so far studied for an animal describes the development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus [8,9,10]. It explains how in the course of development dozens of regulatory genes act together to specify a mesodermal cell population, which later form two ventro-lateral clusters on each side of the primitive gut (archenteron) and finally secrete the calcitic endoskeleton typical of the sea urchin pluteus larva (reviewed in [7]). Interestingly, whereas around 30 transcription factors (TFs) and a few signalling pathways are sufficient for the initiation, progression and maintenance of this process [10], more than 800 genes participate in the final step of cell differentiation and biomineralization of organic matrix. These differentiation genes have been identified using transcriptomic and proteomic experimental strategies [9, 11,12,13], although their roles and GRN linkages are largely unexplored. The extensive level of detail of the sea urchin GRN underlying skeletogenesis provides a useful framework to address questions about the evolution of development mechanisms through comparison with other echinoderms. Expression data are already available for a few orthologs of sea urchin skeletogenic transcription factor genes that have been identified in representatives of all echinoderm classes except crinoids [6, 14,15,16]. However, there has been relatively little comparative analysis of genes involved in skeletal differentiation in echinoderms.
Within the echinoderms, the brittle star class has received growing attention in recent years [27,28,29,30] due to their phylogenetic position as a sister group of sea stars, mode of development and regenerative capabilities. For instance, brittle stars develop a skeleton in the larvae similar to sea urchins [14, 31] and are thus a valuable model for addressing questions relating to differences and conservation of developmental genes involved in the formation of the larval skeleton. With this perspective, a single stage transcriptome identified many orthologs of sea urchin skeletogenic genes in a brittle star species [26], but no quantitative data on the dynamics of gene expression were provided. Furthermore, a comparison of skeletogenic regulatory states between an echinoid and an ophiuroid identified differences and similarities in the specification of the skeletogenic cell lineage [14]. Additionally, brittle stars regenerate their arms as part of their self-defence mechanism [32]. The re-development of the skeleton has been characterised in detail with respect to morphology and gene expression during various phases of regeneration [27,28,29, 33, 34]. Finally, brittle stars are used as important indicator species for ocean acidification studies [30].
All echinoderms develop a calcite skeleton and hundreds of genes are involved in this process. However, the SUFCs in the sea urchin include only 56 genes that are classified as biomineralization genes. To obtain a more precise picture of genes involved in skeletogenesis and their evolution we gathered 1006 sea urchin skeletogenic candidates based on literature searches. This extended candidate list was compiled from proteomic studies based on skeletal elements obtained from adults and larvae [12], a differential analysis of sea urchin mesenchyme blastula where skeletogenic mesenchymal cells were removed [9] or isolated [13] and a large scale morpholino analysis [10]; it is therefore representative of the skeleton developmental process from cell specification up to the deposition of the biomineralised skeleton. We updated this list with the latest annotation of the sea urchin genome and obtained 901 genes (Additional file 3). Of these 901 candidates, 37 are TFs and 32 are signalling molecules belonging to five different pathways (i.e., Fgf, Vegf, Delta/Notch, Wnt and BMP), whilst the rest of the genes belong to various classes of C-type lectin-type domain, carbonic anhydrases, matrix metalloproteases, known skeletogenic matrix genes (sm and msp130) and others. To maintain a very broad view, we searched the homologs of our annotated species for these candidates with the aim to find a core set of skeletogenic genes and possibly a set specifically used in the development of the larval skeleton in echinoids and ophiuroids. We found 601 candidate skeletogenic genes in Ame, 622 in Afi and 672 in Pmi out of 901 genes in Spu, which follow a trend similar to the whole gene set. To display the differences in skeletogenic gene conservation we computed the overlaps between the four species (Fig. 4). Due to the fact that skeletogenesis in the adult is a feature present in the common ancestor of extant echinoderms, we wanted to check whether the 494 skeletogenic genes found in all four species are more highly conserved than a set of randomly selected genes. Therefore, we computed the overlap of 901 genes selected randomly 1000 times and compared it with the skeletogenic gene set (Additional file 1: Figure S7). Our analysis indicated that genes associated with the skeletogenic process are more conserved than a set of random genes (compare 494/757 to 278/613, chi-squared proportion test p < 0.001; Fig. 4; Additional file 1: Figure S8). This is in line with the evolution of the biomineralised ossicle in the form of stereoms at the base of the echinoderms and a high level of conservation of this structure throughout evolution. Although, this analysis gives us a good indication of the presence or absence of genes in the different classes of echinoderms, it does not provide evidence that these genes participate in skeleton formation. Recently, using a candidate approach we showed in a multi-gene expression study that of 13 TFs involved in Spu skeletogenesis 10 are active in Afi development, whilst the other three, although expressed during development, are not localised in cells giving rise to skeleton [14]. This highlights the importance of complementing transcriptomic data with spatial/temporal analysis of gene expression. Therefore, we selected from our list of 622 skeletogenic homologs 11 candidates of the differentiation cascade to investigate if they are expressed in the skeletogenic mesoderm (SM) lineage in brittle stars (Fig. 4). We found that all of these genes are either expressed specifically or are enriched in skeleton-associated cells during the development of A. filiformis. Most of them seem to be specifically enriched in the SM lineage at late gastrula stages in cells where the skeleton is deposited. Together with our previous analysis of developmental regulatory states [14], a total of 24 genes show expression in cells associated with biomineralised skeleton conserved in two distant clades: sea urchin and brittle star. This indicates a largely similar molecular make up of calcitic endoskeleton (65 %) in sea urchin and brittle star; and it is consistent with the ancient origin of the biomineralised skeleton in the form of stereom, which originated at the base of the phylum Echinodermata. 781b155fdc